Annotation and *in silico* localization of the Affymetrix GeneChip Porcine Genome Array

WATCHARAPONG NARABALLOBH¹,³, SIRIWADEE CHOMDEJ³, EDUARD MURANI³, KLAUS WIMMERS¹ and SIRILUCK PONSUKSILI²

¹Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany, ²Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany, ³Department of Biology, Faculty of Science, Chiang Mai University, Thailand

Abstract

Expression microarrays including the Affymetrix GeneChip Porcine Genome Arrays are valuable tools for studying genes and functional networks relevant for the expression of complex traits and the responsiveness of the organism to various treatments. An updated annotation and, for the first time, localization on the porcine physical genome map of »Affymetrix GeneChip Porcine Genome Array probe sets« was made through a workflow of 3 pipelines of comparisons addressing various NCBI (National Center for Biotechnology Information) and EnsEMBL (Ensembl project) databases. »BLAST« (Basic Local Alignment Search Tool) comparisons of Affymetrix probe set consensus sequences with the EnsEMBL Sscrofa 9 cDNA database provided 23,799 probe sets with hits. After annotation 19,730 gene symbols were obtained using the data management system BioMart. Comparison of the Affymetrix probe set consensus sequences with the porcine genome sequence (EnsEMBL Sscrofa 9 LatestGP database) revealed 23,298 probe sets with BLAST hits. In the third pipeline in addition to EnsEMBL Sscrofa 9 cDNA and genomic sequence databases also human, mouse and pig NCBI reference sequence RNA databases were interrogated in an integrated approach where also a threshold of bit score >50 or >90% identity over >100 bp was applied in order to filter questionable annotations and localizations. Gene symbols and gene names were queried from HGNC (human genome organization (HUGO) gene nomenclature committee), EASE (EASE: the Expression Analysis Systematic Explorer) and Entrez Gene revealing 20,269 annotated probe sets. 20,467 probe sets were *in silico* mapped addressing various sources: EnsEMBL Sscrofa 9 LatestGP, pre-EnsEMBL Sscrofa 8.52 LatestGP, NCBI pig reference sequence RNA and genomic databases and PigQTLdb (Pig Quantitative Trait Locus [QTL] database). Using the new annotation and localization data in functional genomics studies will facilitate improving the understanding of the control of quantitative traits in pigs.

Keywords: microarray, expression, genomics, annotation, mapping
Zusammenfassung

Annotation und in silico Kartierung des Affymetrix GeneChip Porcine Genome Arrays

Mikroarrays für Expressionsanalysen einschließlich der Affymetrix GeneChip Porcine Gene Arrays sind wertvolle Werkzeuge, um Gene und funktionelle Netzwerke zu analysieren, die für die Ausprägung komplexer Merkmale und für die Reaktion des Organismus auf verschiedene Behandlungen relevant sind. Eine aktualisierte Annotation und erstmals eine Kartierung der »Affymetrix GeneChip probe sets« (Sonden) im Schweinegenom wurde auf drei Wegen unter Einbeziehung von verschiedenen NCBI (National Center for Biotechnology Information) und Ensembl (Ensembl Projekt) Datenbanken vorgenommen.

Schlüsselwörter: Mikroarray, Expression, Genomik, Annotation, Kartierung

Introduction

Recently, microarray technologies have enabled the measurement of gene expression levels for thousands of genes in parallel. Functional genomics provides new opportunities for determining the molecular processes underlying phenotypic variation towards developmental and reproduction traits, growth, immune response and host-pathogen interaction (BAI et al. 2003, BAND et al. 2002, BERNARD et al. 2007, COGBURN et al. 2003, MOSER et al. 2004, PONSUKSILI et al. 2007, 2008a, 2008b, SUCHYTA et al. 2003, TUGGLE et al. 2007). Currently several whole genome expression microarrays for pigs are available including consortium arrays like the »Pigoligoarray« (http://www.pigoligoarray.org) or commercial microarrays like the Agilent Porcine Gene Expression Microarray (Agilent Technologies; http://www.chem.agilent.com) and the Affymetrix GeneChip Porcine Genome Array (Affymetrix, http://www.affymetrix.com). Also application-specific microarrays have been developed by several research groups. The microarray design of Affymetrix GeneChips has been proven to provide highly reproducible expression profiles and is available for many different species (HARTMANN et al. 2009). Originally, at the time point...
of its release the Affymetrix GeneChip porcine genome array was moderately annotated (1st release based on UniGene Build 28 [August 2004]). Less than 10% of the probe sets on this array were described with gene names, posing a challenge to biological interpretation of data (TSAI et al. 2006). 19,675 of 24,123 probe sets on the Affymetrix Porcine microarray, representing 11,265 unique genes, were annotated based on BLAST (Basic Local Alignment Search Tool, ALTSCHUL et al. 1990) comparison of EnsEMBL human cDNA and genomic sequences (Ensembl project, http://www.ensembl.org/info/about/credits.html; HUBBARD et al. 2002, 2007) with the Affymetrix porcine target sequences, which were extended with porcine sequence information of the Pig Gene Index (The Institute for Genome Research, TIGR; http://www.jcvi.org; LEE et al. 2005), (TSAI et al. 2006). In an 2010 update 19,992 probes were annotated (TSAI et al. 2006; http://www4.ncsu.edu/~stsai2/annotation). However, no information about the position of the respective genes in the porcine genome was provided.

The main objective of this study was to update and improve the annotation of the probe sets represented on the Affymetrix GeneChip Porcine Genome Array and at the same time to provide a localization of the probe sets onto the recent porcine genomic sequence (Sscrofa 9) (http://www.ensembl.org/Sus_scrofa/Info/Index), which will be highly valuable in current efforts to use functional and genetical genomics in pigs. We provide a public accessible annotation and localization data table facilitating the application of the data in pig genomic studies. For annotation of the probe sets homology searches of their corresponding consensus sequences were done to various NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov; PRUITT et al. 2007) databases, HGNC (human genome organization (HUGO) gene nomenclature committee, http://www.genenames.org; WAIN et al. 2002, BRUFORD et al. 2008), EASE (The Expression Analysis Systematic Explorer, http://david.abcc.ncifcrf.gov/ease/ease1.htm; DOUGLAS et al. 2003), EnsEMBL and pre-EnsEMBL (pre build version of EnsEMBL) (Ensembl project, http://www.ensembl.org/info/about/credits.html; HUBBARD et al. 2002, 2007, BIRNEY et al. 2004), and PigQTLdb (Pig Quantitative Trait Locus [QTL] database, http://www.animalgenome.org/cgi-bin/QTLdb/SS/index; HU et al. 2005).

Material and methods

FASTA format sequences of the Affymetrix GeneChip Porcine Genome Array were retrieved from the array library file (http://www.affymetrix.com/support/index.affy) including 23,935 sequences (consensus sequence). The workflow was made up of three pipelines (Figure). BLAST was used as the main method to predict similarity of the sequences in all three pipelines, however different databases were targeted. The highest bit score of each BLAST result was selected for the annotation of each individual probe set. The first pipeline provided annotation data which were queried from EnsEMBL Sscrofa 9 cDNA (http://www.ensembl.org/Sus_scrofa/Info/Index; last accessed 20 Nov. 2009) database. Extracted raw data were stored in a Microsoft Excel spread sheet annotation file. After that, EnsEMBL identifiers were queried via BioMart (http://www.biomart.org; SMEDLEY et al. 2009) to gain more information especially regarding gene symbols and gene names. The second pipeline also addressed EnsEMBL
Consensus sequence

1st pipeline

2nd pipeline

3rd pipeline

BLAST
Web base

Database

Organism

Criteria

Annotation Tools

BioMart

Consensus Sequence from Affymetrix GeneChip Porcine Genome Array (http://www.affymetrix.com/support/index.affy)

BioMart (http://www.biomiart.org)

Database of the HUGO Gene Nomenclature Committee (http://www.genenames.org/cgi-bin/hgnc_downloads.cgi)

The Expression Analysis Systematic Explorer (http://david.abcc.ncifcrf.gov/ease/ease1.htm)

Pig QTLdb (http://www.animalgenome.org/cgi-bin/QTLdb/SS/index)

Figure

Workflow of annotation and localization of Affymetrix GeneChip Porcine Genome Array probe sets

Diagramm der Arbeitsschritte zur Annotation und Lokalisation von Affymetrix GeneChip Porcine Genome Array Sonden
Sscrofa 9 database, but LatestGP (latest version of genomic sequence; http://www.ensembl.org/Sus_scrofa/Info/Index; last accessed 20 Nov. 2009). This database provided genomic and chromosome position which served to obtain localization data. The third pipeline designated »custom pipeline« combined queries of multiple data sources of homologous porcine, and heterologous human or mouse genomic and transcriptomic information, the application of thresholds regarding obtained identities, and the use of expanded sequences in heterologous BLAST search. For comparisons with NCBI databases (http://www.ncbi.nlm.nih.gov/RefSeq; last accessed 1 Jun 2009) BLAST hits were sorted by bit score and priority was given for identities to human, mouse and pig. For probe set consensus sequences with bit scores <50 (for comparisons with NCBI databases) in heterologous comparisons but high identity to Sscrofa 9 sequences, the porcine consensus sequence was expanded by 2,500 bp up-stream and down-stream obtained from Sscrofa 9 LatestGP (»expand« in table). Expanded sequences were BLASTed again against human, mouse and pig NCBI sequences. Similarly for comparison with Ensembl databases thresholds used to filter were by alignment length (≥100 bp) and % identity (≥90). Gene identity numbers, GI numbers, and GenBank accession numbers were used as primary key to obtain gene symbols, gene names and other data from HGNC and EASE. The assignments to chromosomes and positions were retrieved in priority of Ensembl Sscrofa 9 LatestGP and cDNA, pre-Ensembl Sscrofa 8.52 LatestGP, NCBI pig reference sequence RNA, NCBI pig genomic and PigQTL databases. Results from PigQTLdb were used to search the alignment of pig chromosomes to the human genome where Affymetrix microarray elements are virtually mapped.

Results

Three pipelines were used to obtain and integrate available information of porcine, human and mouse genome and transcriptome sequence information and to provide an up-to-date annotation of Affymetrix porcine probe sets. The first and second pipeline provided annotation and localization data obtained without applying thresholds to filter BLAST hits of low reliability (»non-filtered annotation and localization«). In the third pathway in particular also heterologous sequence information from human and mouse was used and thresholds for alignment length and % identity were introduced to obtain the most reliable annotations and localizations (»filtered annotation and localization«). Comparison of consensus sequences used to derive probe sets represented on the Affymetrix GeneChip Porcine Genome Array with Ensembl Sscrofa 9 cDNA database revealed 23,799 probe sets with any BLAST hit. Results are presented in 26 columns summarizing raw BLAST result (Probe set ID, Blast header result, Blast pair-wise result, High Score, Smallest Sum Probability P(N), N, Query start, Query stop, Subject start, Subject stop, Alignment length, Identity value, Identity value full, % Identity, Chromosome position) and results obtained after querying Ensembl Transcript ID with BioMart (SMEDLEY et al. 2009) (Ensembl Transcript ID, Ensembl Gene ID, Gene symbol, Gene name, Chromosome, Gene start (bp), Gene end (bp), Transcript start (bp), Transcript end (bp), EntrezGene ID). The non-filtered data contained elements with % identity at 79-100% summing up to 19,730 gene symbols.
BLASTing Ensembl Sscrofa 9 LatestGP database revealed 23,298 probe sets with any BLAST hit. Outputs are summarized in columns showing the same as raw BLAST results as described above (here not results referring to Ensembl Transcript ID). All % identities ranged between 80 and 100%.

Integration of data retrieved by querying human, mouse and pig genomic and cDNA sequence databases and gene localization and annotation information and application of filters on degree of similarity led to results shown in 13 columns about annotation and 8 columns about localization of genes represented by the Affymetrix probe sets. NCBI BLAST to the reference RNA database (Probe Set Name, BLAST Result Name, % Identity, Alignment Length, Start Position, Stop Position, e-Value, Bit Score, Organism, Type of Sequence, Gene Symbol, Gene Name, Pathway related and Number of pathway related) was completed in June 2009 and revealed 20,689 probe sets meeting our threshold for filtering (18,177 human IDs, 1,023 mouse IDs and 1,489 pig IDs). Localization data are shown in columns of the datasheet referring to alignment length, % identity, high score (from Ensembl) or bit score (from NCBI), smallest sum probability P(N) (from Ensembl) or e-value (from NCBI), start position, stop position and chromosome. In total 20,439 probe sets were above the threshold of ≥100 bp of alignment length and ≥90% identity (last accessed 20 Nov. 2009) (including data from Ensembl Sscrofa 9 LatestGP database: 16,513 probe sets, Ensembl Sscrofa 9 cDNA database: 874, pre-Ensembl Sscrofa 8.52 database: 773, NCBI Pig genomic database: 359, NCBI pig reference mRNA database: 70, Pig QTL database: 1,850). Annotation and localization data obtained from the three pipelines are available via the journal’s webpage (http://archanimbreed.com) or from the authors.

Discussion

Using three pipelines annotations and localizations of probe sets of the Affymetrix GeneChip Porcine Genome Array were obtained querying Ensembl and NCBI databases including non-filtered BLAST results and results meeting thresholds regarding the degree of identity. Gene annotation provided by Ensembl includes automatic annotation, manual curation and other important databases (Birney et al. 2004). The recent version of porcine genome sequence, the high-coverage Sscrofa 9 assembly (April 2009) including chromosomes 1 to 18 and X of the pig genome is based on the integrated highly contiguous physical map of the pig genome as a template for sequencing (Humphray et al. 2007). Querying the Ensembl cDNA database gained slightly more probe sets with any hit than LatestGP database and it is more suitable for obtaining annotation data via BioMart. However, Ensembl LatestGP database is beneficial for obtaining localization information of the probe sets which relies on whole genomic data. Non-filtered data of BLAST provided putative localization of nearly all probe sets (23,709 and 23,298 for Ensembl cDNA and LatestGP, respectively) however with some uncertainty in terms of annotation and localization. In contrast, the application of the thresholds of bit score > 50 for NCBI database analysis and of ≥100 bp of alignment length and ≥90% identity for Ensembl queries in the third pipeline, revealed high degrees of concordance: of 16,513 and 9,313 probe sets for either genomic DNA or cDNA database queries
meeting these thresholds only 137 (0.8 and 1.4%, respectively) had localizations on different chromosomes depending on the source of data. The thresholds used here are comparable to the limits mentioned in the annotation provided by TSAI et al. (2006). In the third pipeline, providing the most reliable annotation and localization based on application of thresholds, the RefSeqs were used as primary key for querying gene names and gene symbols according to the new nomenclature from HGNC, which is more specific and well organized. Further we referred to EASE and Gene Entrez. The annotation of the Affymetrix GeneChip Porcine Genome Array (version 2009.03.12 build 28; https://www.affymetrix.com/analysis/downloads/na28/ivt/Porcine.na28.annot.csv.zip) showed 5 665 gene symbols. These gene data match the new annotation for 4 834 probe sets (85.33%). TSAI et al. (2006) used extended porcine sequences for BLAST against EnsEMBL human database for comparison. Most of the probe sets (23 946) were annotated when omitting any thresholds regarding degree of identity; 19 675 probe sets were annotated with bit scores >50 (2010 update 19 992). In the third pipeline we used expanded sequences for annotation in those cases only, when heterologous BLAST of the Affymetrix consensus sequence revealed no annotation (1 529 cases). According to the average gene length of 2 500 bp expanded sequences were used covering 2 500 bp up and down stream of the consensus sequence. These sequences were checked for their mapping position in the human-pig comparative map. Localization and chromosome position were primary obtained from EnsEMBL Sscrofa 9. Further mapping information was taken from pre-EnsEMBL Sscrofa 8.52, NCBI pig reference sequence RNA and genomic database and PigQTLdb.

In summary, 20 689 probe sets were assigned to a known gene, 20 439 probe sets were in silico mapped onto the porcine genome sequence assembly, and for 18 561 we obtained both kind of information. This study shows how improvabe in silico porcine annotation and localization is thanks to the current efforts of the Pig Genome Sequencing project. The annotation and localization of Affymetric GeneChip Porcine Genome Array probe sets facilitates the application of this tool in functional genomics and genetical genomics studies in pigs.

Acknowledgements

This work was supported by the EC-funded FP6 Project »SABRE« (FOOD-CT-2006-01625) and by internal funds of the FBN and the Graduate School Chiang Mai University.

References

Hintermair V (2007) Comparative Analysis of Bos taurus and Homo sapiens DNA Microarrays. Master Thesis, Citation key: bioinflmu-528, LMU München, Germany

Received 6 July 2009, accepted 7 December 2009.

Corresponding author:

SIRILUCK PONSUKSILI
email: s.wimmers@fbn-dummerstorf.de

Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany